a2 United States Patent

US009576400B2

10) Patent No.: US 9,576,400 B2

van Os et al. 45) Date of Patent: Feb. 21, 2017
(54) AVATAR EDITING ENVIRONMENT (56) References Cited
(75) Inventors: Marcel van Os, San Francisco, CA U.S. PATENT DOCUMENTS
(US); Thomas Goossens, Paris (FR);
Laurent Baumann, Campbell, CA 3:483,261 A L1996 - Yasutake
US): Michael D l’ L p 1 ’ 5,488,204 A 1/1996 Mead et al.
(US); yrehact aa‘e Lampet, (Continued)
Woodside, CA (US); Alexandre
Carlhian, Puteaux (FR) FOREIGN PATENT DOCUMENTS
(73) Assignee: Apple Inc., Cupertino, CA (US) EP 1429291 Al 6/2004
Jp 2000-163031 6/2000
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 262 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/082,035 International Preliminary Report on Patentability issued in Interna-
(22) Filed: Apr. 7, 2011 tional Application No. PCT/US2011/031616 on Oct. 9, 2012, 6
pages.
(65) Prior Publication Data (Continued)
US 2011/0248992 Al Oct. 13, 2011 Primary Examiner — Maurice L McDowell, Jr.
Related U.S. Application Data Assistant Examiner — Raffi Isamags .
. o (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(60) Provisional application No. 61/321,840, filed on Apr.
7, 2010. (57) ABSTRACT
(51) Int. CL An avatar editing environment is disclosed that allows users
GO6T 11/60 (2006.01) to create custom avatars for use in online games and other
GO6T 1920 (2011.01) applications. Starting with a blank face the user can add,
Continued rescale and position different elements (e.g., eyes, nose,
(Continued) mouth) on the blank face. The user can also change the shape
(52) US.ClL of the avatar’s face, the avatar’s skin color and the color of
CPC s GO6T 19/. 2 0 (2013.01); GOGF 3/ 0482. all the elements. In some implementations, touch input and
(2013'91)’ GOGF 3/04812 (2013.01); gestures can be used to manually edit the avatar. Various
(Continued) controls can be used to create the avatar, such as controls for
(58) Field of Classification Search resizing, rotating, positioning, etc. The user can choose

CPC .. A63F 13/12; A63F 2300/5553; GO6Q 30/02;
GO06Q 30/0267; GO6Q 30/0251; G06Q
30/0601; GO6Q 30/0201; GO6Q 30/0241;
GO06Q 30/0261; HO4L 67/306; HOAL
67/38
See application file for complete search history.

//:\\(r

[m—
et Caris = 1234 PY ot
Eves =
N

|l oz

14

between manual and automatic avatar creation. The avatar
editing environment can be part of a framework that is
available to applications. One or more elements of the avatar
can be animated.

33 Claims, 21 Drawing Sheets

//:(r

| —

el Cotier = 1234 PM L
Nose s

Ht o

20
(]

114 | 16

"o
112

US 9,576,400 B2

Page 2
(51) Int. CL 2006;0294465 AlL* 12;2006 Ronen etlal. 715/706
2007/0130001 Al 6/2007 Jung et al.
GOOL 3/0481 (2013.01) 2007/0162936 Al 7/2007 Stalgiings et al.
GOGF 3/0482 (2013.01) 2007/0171091 AL* 7/2007 Nisenboim et al. 340/825.69
GOGF 3/0484 (2013.01) 2007/0260984 Al* 11/2007 Marks et al.cc.... 715/706
GOG6F 3/0488 (2013.01) 2007/0277109 Al 112007 Chen et al.
Gost 11/00 (2006.01) 20090013593 AL 12000 Kang et al
ang et al.
GOoT 1340 (2011.01) 2009/0049392 Al 2/2009 Kart%unen et al.
GO6T 15/04 (2011.01) 2009/0144639 AL* 6/2000 Nims ..occcccoonv.r A63B 24/0059
(52) US. CL 715/757
CPC ... GO6F 3/04817 (2013.01); GOGF 3/04845 2009/0147008 Al 6/2009 Do et al.
(2013.01); GOGF 3/04883 (2013.01); GosT 20090130778 AL 62009 Hieol
11/001 (2013.01); GO6T 11/60 (2013.01); 5009/0237328 Al 9/2009 Gyorfi et al.
GO6T 13/40 (2013.01); GO6T 15/04 (2013.01); 2009/0254859 AL* 10/2009 Arrasvuori et al. 715/810
GO6T 2200/24 (2013.01); GO6T 2219/2012 2009/0281925 Al 11/2009 Winter et al.
(2013.01); GO6T 2219/2016 (2013.01) 2009/0300513 Al* 12/2009 Nims etal. ... 715/747
2010/0211899 Al1* 82010 Fujiokaccocovevvevecnnns 715/765
s 2010/0302395 Al 12/2010 Mathe et al.
(36) References Cited 2011/0161837 Al 6/2011 Betzler et al.
2011/0252344 A1 10/2011 van
U.S. PATENT DOCUMENTS 2011/0292051 Al 12/2011 Nelson et al.
5615320 A 4/1997 Lavendel 2011/0296324 A1 12/2011 Goossens et al.
o A 1hioos ghseretal FOREIGN PATENT DOCUMENTS
5,880411 A 3/1999 Gillespie et al.
6,188,391 Bl 2/2001 Seely et al. P 2002-342033 11/2002
6,310,610 Bl 10/2001 Beaton et al. KR 10-2002-0042248 A 6/2002
6,323.846 Bl 11/2001 Westerman et al. WO WO007120981 A2 10/2007
6,453,294 Bl 9/2002 Dutta et al. WO WO2009133710 Al 11/2009
6,545,682 Bl 4/2003 Ventrella et al.
6,690,376 Bl 2/2004 Saito et al. OTHER PUBLICATIONS
6,690,387 B2 2/2004 Zimmerman et al.
6,873,610 Bl 3/2005 Noever Alia K. Amin et al., “The Sense MS: Enriching the SMS experience
;:(l)éi:ggj g% ggggg %mﬁiﬁn of al. for Teens by Non-verbal Means”, Human-Computer Interaction—
7.386,799 Bl 6/2008 Clanton et al. Interact 2005, IFIP TCI13 International Conference Proceedings,
7,484,176 B2 1/2009 Blattner et al. Rome, Italy, Sep. 12-16, 2005, pp. 962-965.
7,487,458 B2 2/2009 Jalon et al. PCT Notification of Transmittal of the International Search Report
7,603,413 Bl 10/2009 Herold et al. and the Written Opinion for Application No. PCT/US2011/031616
7,636,755 B2 12/2009 Blattner et al. dated Aug. 30, 2011, 9 pages.
7,663,607 B2 2/2010 Hotelling et al. Maria del Puy Carretero et al., “Preserving Avator Genuineness in
;’ggz’ggg g% 47‘;58}8 ISATS;: £1' Different Display Media,” Mobile Networks and Applications, vol.
7:827:495 B2 11/2010 Bells ef al. 13, No. 6, J.ul. 15, 2008, pp 627-634 (XP019647249).
7.895.049 B2 2/2011 O Sullivan et al. U.S. Non-Final Office Action for U.S. Appl. No. 12/791,643 dated
7,908,554 Bl 3/2011 Blattner Jan. 20, 2012, 12 pages. . .
7,921,066 B2 4/2011 Van Dyke Parunak et al. The Mii Avatar Editor available at http://www.miisearch.com/mii-
7,979,574 B2 7/2011 Gillo et al. creatorhtml as of Jan. 7, 2010 (Mii Editor).
8,026,918 Bl 9/2011 Murphy Free Photoshop Tutorials: Gradient Filter II at http://www.digiretus.
8,037,147 B1 10/2011 Herold et al. comvtippel/cikkiro php? SORSZAM=177 as of Mar. 28, 2009
8,047,088 B2 11/2011 Lee et al. (Photoshop).
8,088,044 B2 1/2012° Tchao etal. Office Action in Taiwan Application No. 100111887 issued on Oct.
8,156,060 B2* 4/2012 Borzestowski et al. 706/45 7, 2013, 23 pages with English translation.
g’ggg’%‘g g% gggg Eg}itﬁ:re‘:tjl' “Modc_el Gene_ration for_ an Intrl_lsion Detection System Using
R’E44,054 E 32013 Kim ' Genetic Algorithms” Chittur, Adhitya, Nov. 27, 2001, 19 pages.
8,402:378 B2 3/2013 Blattner et al. Lee, SK. et al. (Apr. 1985). “A Multi-Touch Three Dimensional
8,439,750 B2 5/2013 Kawamoto Touch-Sensitive _Tablet,” Pr_oceedings of CHI: ACM Conference on
8,473,848 B2 6/2013 Bells et al. Human Factors in Computing Systems, DD. 21-25.
8,479,122 B2 7/2013 Hotelling et al. Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Ges-
8,692,830 B2 4/2014 Nelson et al. tures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the
8,694,899 B2 4/2014 Goossens et al. Requirements for the Degree of Doctor of Philosophy in Computer
2001/0050689 Al 12/2001 Park Science at Carnegie Mellon University, 285 pages.
2002/0061781 Al 5/2002 Tonomura Rubine, D.H. (May 1992). “Combining Gestures and Direct
%882;88%223 ﬁ} 3‘;3882 g{{gﬁﬁ: da Westerman, W. (Spring 1999) “Hand Tracking, Finger Identifica-
5005/0143108 Al 6/2005 Sco ef al. tion, and Chordic Manipulation on a Multi-Touch Surface,” A
2005/0248574 Al* 11/2005 Ashtekar et al. ... 345/473 Dissertation Submitted to the Faculty of the University of Delaware
2006/0026521 Al 2/2006 Hotelling et al. in Partial Fulfillment of the Requirements for the Degree of Doctor
2006/0059430 Al 3/2006 Bells et al. of Philosophy in Electrical Engineering, 363 pages.
2006/0075053 Al 4/2006 Xu
2006/0197753 Al 9/2006 Hotelling * cited by examiner

U.S. Patent Feb. 21,2017 Sheet 1 of 21 US 9,576,400 B2

100
D
el Cartier = 12:34 PM =
118
Eyes +H
L 11 104
106‘1‘

120
102
1147 ;116
\—110

\112

FIG. 1A

U.S. Patent Feb. 21,2017 Sheet 2 of 21 US 9,576,400 B2

100
/ —>
—aenlll Carrier & 1234 PM -
Nose B N
1 | 104
1061
120
122
1147 | 116
\\—

110
7

FIG. 1B

U.S. Patent Feb. 21,2017 Sheet 3 of 21 US 9,576,400 B2

100
/ T
il Carrier = 12:34 PM -
Hair H—
- . 104
106‘(A —
1247 120
122
114 [m[m]m]
R e 1"
\\
\ 110
\ \112

FIG. 1C

U.S. Patent Feb. 21,2017 Sheet 4 of 21 US 9,576,400 B2

100

@ A

— >

—annll Carrier = 1234 PM [

Moutr T

1061 L 0s
124 120
(122
126
1147 oon
EEE (116
| 410

112

FIG. 1D

U.S. Patent Feb. 21,2017 Sheet 5 of 21 US 9,576,400 B2

100

@ R

— >

el Carrier = 12:34 PM []

118
Hat m

106‘(1‘ 1 1 104

128

1247 120

122

126

114

U.S. Patent Feb. 21,2017 Sheet 6 of 21 US 9,576,400 B2

100

@ A

— >

sl Carrier = 1234 PM -

Hat

/‘ 200

/f 202

/116

110

S

112

FIG. 2A

U.S. Patent Feb. 21, 2017

Sheet 7 of 21

=

\

— >
el Carrier = 12:34 PM -
e
P

Y Y

RED GREEN BLUE
Y J \. J . J/
N))

YELLOW PURPLE ORANGE

N/
)

206} 1 PINK
N

114— |

FIG. 2B

US 9,576,400 B2

100

/;’ 204

110

112

U.S. Patent

Feb. 21, 2017

Sheet 8 of 21

US 9,576,400 B2

100
/ — o \
—nlll Cartier = 12:34 PM -
et
106
_L 104
)_120
—102

FIG. 3A

U.S. Patent Feb. 21,2017 Sheet 9 of 21 US 9,576,400 B2

100
/ \
el Carrier = 1234 PM =
t
106‘(A
—104
//f 120
—102
3 &
ono

FIG. 3B

U.S. Patent

300>

Feb. 21, 2017

Sheet 10 of 21

>

el Carrier =

12:34 PM

Cance

Hat

Done

FIG. 3C

US 9,576,400 B2

100

U.S. Patent Feb. 21,2017 Sheet 11 of 21 US 9,576,400 B2

R

FIG. 4A

U.S. Patent Feb. 21,2017 Sheet 12 of 21 US 9,576,400 B2

FIG. 4B

U.S. Patent Feb. 21,2017 Sheet 13 of 21 US 9,576,400 B2

FIG. 5C

FIG. 5B

FIG. 5A

US 9,576,400 B2

Sheet 14 of 21

Feb. 21, 2017

U.S. Patent

49 'Old

09

q009

o

209

€009

U.S. Patent Feb. 21,2017 Sheet 15 of 21 US 9,576,400 B2

7"01 7127 714
Appilicati
pplications 702
Avatar Animation Engine Avatar Editing Environment
704 /fm
Services Touch Model |
706
0r8
708
Hard
ardware 710

FIG. 7A

U.S. Patent

720’{1‘

Feb. 21, 2017

Sheet 16 of 21

US 9,576,400 B2

126

API-Calling Component(s)

Return
Values,

API Calls,
Parameters

¢ Parameters

'

124

Application Programming Interface

APIl-Implementing Component(s)

122

7301

FIG. 7B

Application A 740

Application B 744

1

\

“_

: Service B Service B
Service A AP API A 7_3_8_ API B ZAZ
Service A 732 Service B 734
OS APl A 746 OS API B 748

Operating System (OS) 736

FIG.7C

U.S. Patent Feb. 21,2017 Sheet 17 of 21 US 9,576,400 B2

800?A

Presenting Avatar Editing Environment on Display

802

Displaying 3D Avatar Mode! In Avatar Editing Environment
804

Receiving First Input Selecting Avatar Element Category
806

l

Receiving Second Input Selecting Avatar Element From Avatar Element Category

808
v
Rendering Selected Avatar Element On 3D Avatar Model
810
Receiving Third Input For Manually Editing Avatar Element
812

FIG. 8

U.S. Patent Feb. 21,2017 Sheet 18 of 21 US 9,576,400 B2

)‘ 900
952
Operating System Instructions j

Communication Instructions _S— 954 =)r 1
- _S‘ 956 > Accelerometer
GUl Instructions

. - iy 958
Sensor Processing Instructions

Avatar Editing Environment

Avatar Animation Engine iy 976
Avatar Data

915

Phone Instructions ggg » Location Processor j
Electronic Messaging Instructions 5 964
Web Browsing Instructions 5 966 916
Media Processing Instructions 5y > Magnetometer
GPS/Navigation Instructions S %8
Camera Instructions 5 70 . f 10

iy 972 » Motion Sensor

Is

912
Light Sensor j

)‘914

h 4

Proximity Sensor

=
[0
» 3
2
<
Y

i LU g
4 YVY VYYVYY
PREIN Camera N
Memory Interface 9061 T 17| Subsystem [T 7
| 5 .)
902~(< .| Peripherals | Wireless 0 922
Interface [« Communication /g‘ 4
v Subsystem(s)
| o 928
Processor(s) PREN :[q)h
'y

926 = | '—Oy
Y
y 940

f 942 [/O Subsystem y 944

Touch-Screen Controller Other Input Controller(s)

r 3 A

Touch Screen Other Inpqt / Control
J(Devices l

946 948

FIG. 9

US 9,576,400 B2

Sheet 19 of 21

Feb. 21, 2017

U.S. Patent

o0Lo0l

0001 \

oL 9OId

qzool lﬂ

M\ Zrol M‘ ovol vl 0¢0l
S30IAISS Se0IAISS SO0IAISS
18)Us) }IOMIBN 801A8Q
owes) le100S 9lIol

e W

SHOMJSN B SPIMA

A\ 4

801Ae(]
$$800Y

U.S. Patent Feb. 21,2017 Sheet 20 of 21 US 9,576,400 B2

Touch I/O Communication Computing
Device Channel System
1101 1102 1103

FIG. 11

U.S. Patent Feb. 21,2017 Sheet 21 of 21 US 9,576,400 B2

1200
Computer-Readable Medium 1201 Power /
~ System
Operating System 1222 1244
Communication Module 1224
Touch Processing Module 1226
Graphics Module 1228 E)F(}ertnal
Applicati or
pplications 1230 1236
Module 1238
1203-8
1203-5
1204 RF)
Controller Peripherals 1203-3 o Speaker
1220 Interface Circuitry 1p250
1203-4
_ Audio
12032 Circuitry
Processor 1210 _k)
1218
Microphone
1252
1203-1
I/O Subsystem 1206
Touch I/O Other I/O
Device Controller(s)
Controller 1234
1232
1203-6 1203-7
Touch 1/O Other 1/O
Device Devices
1212 1214

FIG. 12

US 9,576,400 B2

1
AVATAR EDITING ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 61/321,840, filed on Apr. 7, 2010,
under 35 U.S.C. §119(e). The disclosure of the prior appli-
cation is considered part of and is incorporated by reference
in the disclosure of this application.

TECHNICAL FIELD

This disclosure relates generally to avatar creation for
computer systems and other devices.

BACKGROUND

An avatar is representation of a user or their alter ego. An
avatar is often in the form of a three-dimensional (3D) model
used in computer games or a two-dimensional (2D) icon or
picture used on Internet forums, social networks and other
communities. Avatars can also be used in video games,
including online interactive gaming environments.

Avatars in video games are the player’s physical repre-
sentation in the game world. Online games often provide
means for creating varied and sophisticated avatars. In some
online games, players can construct a customized avatar by
selecting from a number of preset facial structures, hair-
styles, skin tones, clothes, accessories, etc. (collectively
referred to as “elements™”). Once the preset elements are
selected, there is no facility for allowing users to manually
adjust the elements (e.g., resize or position elements).

SUMMARY

An avatar editing environment is disclosed that allows
users to create custom avatars for use in online games and
other applications. Starting with a blank face the user can
add, rescale and position different elements on the blank
face, including but not limited to different eyes, ears, mouth
(including teeth and smile), nose, eyebrows, hair, beard,
moustache, glasses, earrings, hats, and other elements that
are associated with physical characteristics of humans and
fashion. The user can also change the shape of the avatar’s
face, the avatar’s skin color and the color of all the elements.

In some implementations, touch input and gestures can be
used to edit the avatar. Various controls can be used to create
the avatar, such as controls for resizing, rotating, position-
ing, etc. The user can choose between manual and automatic
avatar creation. In some implementations, the avatar editing
environment can be part of a framework that is available to
applications, such as address books, text messaging, chat
sessions, e-mail, games or any other applications. In some
implementations, one or more elements of the avatar can be
animated. For example, the avatar’s eyes can be animated to
track an object in a user interface or to indicate direction. In
some implementations avatar data can be stored on a net-
work so that the avatar can be used in online applications or
downloaded to a variety of user devices at different user
locations.

In some implementations, a computer implemented
method includes: presenting an avatar editing environment
on a display of a device; displaying a three-dimensional
avatar model in the avatar editing environment; receiving
first input selecting an avatar element category; receiving a
second input selecting an avatar element from the avatar

10

15

20

25

30

35

40

45

50

55

60

65

2

category; rendering the selected avatar element on the
three-dimensional (3D) avatar model; and receiving third
input for manually editing the avatar element.

Some embodiments include one or more application pro-
gramming interfaces (APIs) in an environment with calling
program code interacting with other program code being
called through the one or more interfaces. Various function
calls, messages, or other types of invocations, which further
may include various kinds of parameters, can be transferred
via the APIs between the calling program and the code being
called. In addition, an API may provide the calling program
code the ability to use data types or classes defined in the
API and implemented in the called program code.

At least certain embodiments include an environment
with a calling software component interacting with a called
software component through an API. A method for operating
through an API in this environment includes transferring one
or more function calls, messages, and other types of invo-
cations or parameters via the APL

The details of one or more implementations of an avatar
editing environment are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the avatar editing environment will
become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1E illustrate an exemplary avatar editing envi-
ronment for creating custom avatars.

FIG. 2A illustrates an exemplary element picker for
selecting avatar elements from a category of avatar ele-
ments.

FIG. 2B illustrates an exemplary color picker for selecting
a color for a category of avatar elements.

FIGS. 3A-3C illustrates exemplary processes for manu-
ally editing avatar elements.

FIGS. 4A and 4B illustrate an alternative element picker
for selecting avatar elements from a category of avatar
elements.

FIGS. 5A-5C illustrate editing regions for manually edit-
ing avatar elements.

FIGS. 6 A-6B illustrate animating avatar elements to track
objects in a user interface or indicate direction.

FIGS. 7A-7C is an exemplary software architecture for
implementing the avatar editing environment and animation
described in reference to FIGS. 1-6.

FIG. 8 is a flow diagram of an exemplary process for
creating an avatar in an avatar editing environment.

FIG. 9 is a block diagram of an exemplary hardware
architecture for implementing the avatar editing environ-
ment and animation described in reference to FIGS. 1-8.

FIG. 10 is a block diagram of an exemplary network
operating environment for a device employing the avatar
editing environment and animation described in reference to
FIGS. 1-9.

FIG. 11 is block diagrams illustrating communication
between an exemplary Touch I/O device and a computing
system.

FIG. 12 is a block diagram of an exemplary architecture
for a device having touch I/O capabilities.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION
Overview of Avatar Editing Environment

FIGS. 1A-1E illustrate an exemplary avatar editing envi-
ronment for creating custom avatars. In some implementa-

US 9,576,400 B2

3

tions, a user of device 100 (e.g., a mobile device) can invoke
an avatar editing application by selecting an icon on a
homescreen or by selecting the application through a menu
or other input mechanism. In some implementations, the
avatar editing environment can be presented in a web page
displayed in a browser of device 100. The web page can be
served my a network service (e.g., a mobile service).

Upon invocation of the avatar editing environment, a user
interface 104 for the editing environment can be presented
on a display 102 of device 100. Display 102 can be a touch
sensitive display or surface responsive to touch input and
gestures. Although a mobile device is shown, device 100 can
be a desktop computer, a handheld computer, a personal
digital assistant, a cellular telephone, an electronic tablet, a
network appliance, a camera, a smart phone, an enhanced
general packet radio service (EGPRS) mobile phone, a
network base station, a media player, a navigation device, an
email device, a game console, or a combination of any two
or more of these devices.

Referring to FIG. 1A, in some implementations avatar
106 can be displayed on user interface 104. Avatar 106 can
be a 2D or 3D avatar model. Avatar 106 can also be full body
avatar. When the editing environment is invoked or the user
is creating a new avatar, a default avatar can be displayed on
user interface 104. In some implementations, the default
avatar can have a blank face for receiving elements selected
by the user in the editing environment. In other implemen-
tations, a default avatar having predefined elements can be
displayed. The default avatar can be automatically created
based on user preferences specified in a dialog. For example,
when the user first invokes a game environment on device
100, the user can be presented with a number of predefined
avatars and the user can select one as a default avatar. In
other implementations, a default avatar can be automatically
created on-the-fly based on user preferences for physical
characteristics, such as gender, age, hair color, eye color, etc.
Starting with a blank face the user can add different elements
on the blank face, including but not limited to different eyes,
ears, mouth (including teeth and smile), nose, eyebrows,
hair, beard, moustache, glasses, earrings, hats, and other
elements that are associated with physical characteristics of
humans and fashion. The user can also change the shape of
the avatar’s face, the avatar’s skin color and the color of all
the elements.

Exemplary Category Picker

In the example shown, the user selected an “Eyes” cat-
egory from category picker 110. Category picker 110 can be
a bar with icons representing element categories. Text and
other visual indicators of categories can also be used. The
selected category can be the category having an icon in
center position 112 of category picker 110. The icon in
center position 112 can be highlighted or otherwise visually
enhanced to indicate its selected status. In some implemen-
tations, the user can make a swipe gesture on the bar to the
left or right to move a different icon into center position 112.
In response to the swipe gesture, category picker 110 can be
animated so that the category icons move like a wheel on a
slot machine. Friction can also be simulated so that accel-
eration of the wheel can be controlled. For example, a faster
gesture results in an increased acceleration of the icons
passing through center position 112.

In the example shown, the “Eyes” category is currently
occupying middle position 112 and is therefore highlighted
to indicate its selected status. An element picker represented
by icon 116 was used to select eyes element 120. Upon its

10

15

20

25

30

35

40

45

50

55

60

65

4

selection, the eyes element 120 were added to the face of
avatar 106, which was originally blank. The operation of the
element picker is further described in reference to FIG. 2A.

Display 102 presents control region 118. Control region
118 can include text describing the currently selected cat-
egory. For example, the currently selected “Eyes” category
is indicated by the text “Eyes” in control region 118. Control
region 118 can also include one or more controls (e.g.,
virtual buttons) for exiting the avatar editing environment.
In the example shown, a first virtual button can cancel (e.g.,
exit) the avatar editing environment without saving changes
to avatar 106 (e.g., “Cancel” button). Another button can be
used to exit the avatar editing environment and save changes
to avatar 106 (e.g., “Done” button).

A color picker represented by icon 114 can be selected to
allow the user to select a color for the selected category. For
example, if the “Eyes” category is selected, the color picker
can be used to select a color for all the eyes elements that can
be selected using element picker 116. The operation of the
color picker will be further described in reference to FIG.
2B.

Referring to FIG. 1B, the user has selected a “Nose”
category using category picker 110. The selection is indi-
cated by an icon of a nose occupying center position 112 of
category picker 110. Control region 118 indicates that the
category “Nose” has been selected by displaying the text
“Nose.” The user selected nose element 122 from the
element picker. Nose element 122 was automatically added
to the face of avatar 106. The selected element category can
be used to determine a default region on the avatar face to
add the selected element from the category. In this case, the
“Nose” category selection determined the location of nose
element 122 to be the center of the avatar face.

Referring to FIG. 1C, the user has selected a “Hair”
category using category picker 110. The selection is indi-
cated by an icon of hair occupying center position 112 of
category picker 110. Control region 118 indicates that the
element category “Hair” has been selected by displaying the
text “Hair.” The user selected hair element 124 from the
element picker. Hair element 124 was automatically added
to the avatar face. The “Hair” category selection determined
the location of hair element 124 to be on top of the avatar
head.

Referring to FIG. 1D, the user has selected a “Mouth”
category using category picker 110. The selection is indi-
cated by an image of a mouth occupying center position 112
of category picker 110. Control region 118 indicates that the
element category “Mouth” has been selected by displaying
the text “Mouth.” The user selected mouth element 126 from
the element picker. Mouth element 126 was automatically
added to the avatar face. The “Mouth” category selection
determined the location of mouth element 126 to be below
nose element 122 on the avatar face.

Referring to FIG. 1E, the user has selected a “Hat”
category using category picker 110. The selection is indi-
cated by an image of a hat occupying center position 112 of
category picker 110. Control region 118 indicates that the
category “Hat” has been selected by displaying the text
“Hat.” The user selected a hat element 128 from the element
picker. Hat element 128 was automatically added to the
avatar head. The “Hat” category selection determined the
location of hat element 128 to be on top of hair element 124.

In FIGS. 1A-1E, the user selected eyes, nose, hair, mouth
and a hat for avatar 106. In some implementations, the
elements can be 2D textures, which are rendered onto a 3D
model of the avatar head. In some implementations, the
elements can be 3D objects that are rendered onto the 3D

US 9,576,400 B2

5

model of the avatar head. For example, a graphics engine
can create “eye sockets” in the 3D model and insert 3D
“eye” objects into the sockets. The 3D “eye” objects can be
animated to create the illusion that the avatar is looking in
a particular direction or tracking objects, as described in
reference to FIGS. 6A-6B.

In some implementations, when adding both hair and hat
elements to an avatar, the hair element can be modified so
that when the hat element is added to the avatar the hair
appears to be covered while still maintaining the selected
hair style. For example, “spikey” hair with a baseball cap
could result in hair sticking out through the top of the cap.
To avoid this issue, the hair element is cut into two parts. The
editing environment can determine if a hat and hair combi-
nation would result in hair sticking out through the top of the
hat, and in those cases, only the bottom half of the hair is
rendered on the avatar model.

Exemplary Avatar Element Picker

FIG. 2A illustrates an exemplary element picker for
selecting avatar elements from a category of avatar ele-
ments. In the example shown, the user has touched or
otherwise interacted with element picker icon 116. Upon
invocation of the element picker a grid view 200 is dis-
played. Grid view 200 can include a number of cells, where
each cell displays an avatar in context with a different
element selected from the category of elements. In this
example, the “Hat” category was selected, resulting in each
avatar displayed in a cell wearing a different hat.

In some implementations, one cell (e.g., top left corner
cell in FIG. 2A) can display avatar 106 without the element
(e.g., without a hat) for comparison with other cells. Another
cell (e.g., center cell) can display avatar 106 with the
currently selected element (e.g., the currently selected hat).
In some implementations, each cell can contain a snapshot
image of a 3D avatar model to capture appropriate lighting
and shadows to provide a 3D effect. In other implementa-
tions, each cell can contain a 2D image of the avatar (e.g.,
front facing view). The user can select an element by
touching or otherwise interacting with the cell displaying the
desired element. In this example, the user has touched the
third cell in the middle row grid view 200, where the avatar
is shown wearing a “Canada” ski hat. The selected cell can
be visually enhanced (e.g., highlighted, colored) to indicate
its selected status. Touching the “Done” button can return
the user to user interface 104 of the avatar editing environ-
ment.

The elements can be displayed in grid view 200 in a
variety of ways. Avatars can be displayed in cells based on
element type. For example, holiday hats can be displayed in
the same row or column of grid view 200. In FIG. 2A,
holiday hats for Thanksgiving, Christmas and Independence
Day are displayed in the third row of grid view 200. Grid
view 200 can be paginated so that a swipe gesture or other
gesture can be used to display a new page with a new grid
view. In some implementations, grid view 200 can be
updated with new elements in response to a motion gesture.
For example, when the user shakes device 100 or other
motion gesture, a new grid view can be displayed with
different elements from the currently selected category. An
accelerometer or other motion sensor onboard device 100
can be used to detect motion. The new elements displayed in
cells of the new grid view can be randomly selected based
on other elements of avatar 106. For example, eye color, hair
color and skin color can be used to select fashion elements
having an appropriate color or color scheme, so that the

5

10

15

20

25

30

35

40

45

55

60

6

resulting avatar 106 is color coordinated. The selection of
colors can be based on known color heuristics.

Exemplary Avatar Color Picker

FIG. 2B illustrates an exemplary color picker for selecting
a color for a category of avatar elements. In the example
shown, the user has touched or otherwise interacted with
color picker icon 114. Upon invocation of the color picker,
a grid view 204 is displayed. Grid view 204 can include a
number of cells, where each cell displays a different color.
In this example, the color black was selected, resulting in
each avatar displayed in cells of grid view 200 wearing a
different black hat. The color selected in the color picker can
be applied to all elements in the category selected by the
category picker. In some implementations, the colors
selected for display in grid view 204 can be limited based on
the category selected. For example, if the “Nose” category
is selected, then grid view 204 may display different skin
tones. If the “Eyes” category is selected, then grid view 204
may display various shades of blue, green, brown and hazel,
etc.

Exemplary Manual Editing of Avatar Elements

FIGS. 3A-3C illustrate exemplary processes for manually
editing avatar elements. After the user has created a custom
avatar by selecting and adding elements, the user can
manually edit those elements in user interface 104.

In some implementations, the user can apply touch input
and gestures to resize, rotate and position the elements of
avatar 106. In the example shown, the user resized eyes
element 120 by touching eyes element 120 at points indi-
cated by arrows and making a pinching gesture in the
direction of the arrows. FIG. 3B shows the result of the
pinching gesture. In this example, eyes element 120 had a
distance of d1 between the eyes before pinching (FIG. 3A)
and a distance of d2 between the eyes after pinching (FIG.
3B), where d1>d2. For elements that have symmetry (e.g.,
eyes, ears), the symmetry can be maintained without user
intervention during manual editing to assist the user in
editing. In devices without a touch sensitive display, mouse
controls can be used to resize, rotate and position elements
on avatar 106.

Referring to FIG. 3C, the user can zoom on any of the
elements of avatar 106 in user interface 104 for more refined
manual editing. In some implementations, the element is
automatically zoomed in response to a user touching the
element. Multiple taps can change the zoom level incre-
ments where one zoom or magnification level change occurs
for each tap. Alternatively, a reverse pinching gesture
(spreading apart two fingers) can be used zoom elements of
avatar 106. In other implementations, the user can zoom on
a particular element using zoom button 300. Other zoom
controls can also be used including, for example, a magni-
fying glass tool.

Exemplary Alternative Avatar Element Picker

FIGS. 4A and 4B illustrate an alternative element picker
for selecting avatar elements from a category of avatar
elements. In some implementations, an avatar is divided into
editing zones 400-406. In the example shown, zone 400
includes the hat, zone 402 includes the eyes, zone 404
includes the nose, zone 406 includes the mouth. Other zones
are also possible. When a user wants to edit a particular
element of the avatar, the user selects the corresponding

US 9,576,400 B2

7

zone containing the element. On a device with a touch
sensitive display, the user can touch any portion of the zone
to activate the zone. In the example shown, the user acti-
vated zone 400 containing the hat. Upon activation, buttons
408a, 4085 can be displayed for selecting different hats.
When a left or right button 408 is touched, a new hat slides
in from the left or right of the display, respectively. Imple-
mentations using other animations or no animations are also
possible. FIG. 4B shows the avatar with a new hat after
activation of button 408.

Exemplary Manual Editing with Editing Regions

FIGS. 5A-5C illustrate editing regions for editing avatar
elements in the avatar editing environment. In some imple-
mentation, manual edits made by a user to an element can
restricted to defined editing regions. Using touch input or
gestures, for example, the user can resize, stretch or move
elements within the editing region. In some implementa-
tions, if the user resizes, stretches or moves an element out
of the editing region, the element will “snap back™ to the
editing region. Alternatively, the element can bounce off a
virtual wall or bumper defining the boundary of the editing
region when the user attempts to resize, stretch or move the
element outside the editing region. Restricting manual edits
to defined editing regions can help a user in creating custom
avatars.

Referring to FIGS. 5A-5C, editing regions 500a, 5005
contain the left and right eyes of the avatar. The user can
move, rotate or resize the eyes anywhere within their respec-
tive editing regions 500a, 5005. In this example, the editing
regions 500a, 5005 are circular regions. Editing regions
500a, 5005, however, can be any closed polygon, including
but not limited to circles, squares, rectangles and triangles.
FIG. 5B illustrates a rectangular editing region 500c¢ for the
nose of the avatar. The user can move, rotate, or resize the
nose anywhere within the editing region 500¢. FIG. 5C
illustrates a rectangular editing region 5004 for the mouth of
the avatar. The user can move, rotate or resize the mouth
anywhere within the editing region 5004.

Exemplary Avatar Animation

FIGS. 6 A-6B illustrate animating avatar elements to track
objects in a user interface. In some implementations, ele-
ments added to an avatar can be animated. For example,
elements (e.g., eyes, mouths, ears, eyebrows) can be ani-
mated to simulate human facial expressions, such as happy,
sad, angry, surprise, boredom contemplation or any other
human facial expression. Animations can also be applied to
avatar body parts (e.g., legs, arms, head) to allow the avatar
to express itself through fully body movements (e.g., a
dancing avatar).

In some implementations, animations for elements can be
selected and previewed in the avatar editing environment. In
some implementations, the user can select (e.g., select from
a menu) a particular animation for a particular element. In
other implementations, the use can set the animations to
trigger in response to various trigger events. Some examples
of trigger events can be user actions or context. In an email
or text messaging application, if the user is waiting for a
response from another user, their avatar can be animated to
appear to be waiting or sleeping. For example, the avatar’s
eyes can be closed and the chest animated to contract and
expand to simulate slow, deep breathing associated with
sleeping. With a full body avatar, the avatar can be animated

10

25

40

45

50

55

8

to tap its foot (perhaps with its arms crossed as well)
simulate waiting or impatience.

Referring to FIGS. 6A and 6B, the eyes of avatar 602 can
be animated to track a cursor 606 in a user interface 600. In
user interface 600q, avatar 602 is looking down at cursor
606a. In interface 6005, avatar 602 is looking up and to the
right at cursor 6065. The eyes of avatar 602 can be animated
independently of each other and other elements, such as
eyebrows. In some implementations, an avatar animation
engine (e.g., 712) can register with an operation system
(e.g., OS 708) to receive trigger events or position informa-
tion, such as cursor coordinates. In some implementations,
a line-of-sight vector from the eyes to the cursor can be
computed in display coordinates using vector algebra. The
line of sight vector can then be used by animation engine
712 to animate the eyes of avatar 602 to create the illusion
that avatar 602 is tracking cursor 606 with its eyes as cursor
606 moves about user interface 600.

Avatar animations can be used in variety of applications,
including but not limited to address books, chat sessions,
video conferencing, email, games or any other application
that can support an animated avatar. In an address book
application, when a user receives an avatar with a video card
(Vcard) from another individual, the avatar can “come alive”
and follow the movement of a cursor with its eyes, head
and/or body when the Vcard is opened. In a video chat
environment, each party can be represented by an avatar
rather than a digital image. Each party can use the avatar to
track the other party’s movement by controlling their respec-
tive avatar’s eyes, head and body to follow the other party’s
avatar in a video chat room. In some implementations, an
avatar viewing angle can mimic camera position.

Exemplary Software Architecture

FIG. 7A is an exemplary software architecture for imple-
menting the avatar editing environment and animation
described in reference to FIGS. 1-6. In some implementa-
tions, the avatar editing environment can be part of a
framework in a software architecture or stack. An exemplary
software stack 700 can include an applications layer 702,
framework layer 704, services layer 706, OS layer 708 and
hardware layer 710. Applications (e.g., email, text messag-
ing, games) can incorporate the avatar editing environment
through the use of an Application Programming Interfaces
(API). Framework layer 704 can include avatar animation
engine 712 and avatar editing environment 714. Avatar
animation engine 712 can handle animation of avatar ele-
ments, such as the animations described in reference to
FIGS. 6A and 6B. Animation engine 712 can make API calls
to graphics and animations services or libraries in services
layer 706 or OS layer 708 to perform all or some of its tasks.
Avatar editing environment 714 can provide the user inter-
faces and features described in reference to FIGS. 1-5.
Avatar editing environment 714 can make API calls to
services or libraries in services layer 706 or OS layer 708 to
perform all or some of its tasks.

Services layer 706 can provide various graphics, anima-
tions and Ul services to support animation engine 712,
avatar editing environment 714 and applications in applica-
tions layer 702. In some implementations, services layer 706
includes touch model 716 for interpreting and mapping raw
touch data from a touch sensitive device to touch events
(e.g., gestures, rotations), which can be accessed by appli-
cations and by avatar editing environment 714 using call

US 9,576,400 B2

9

conventions defined in a touch model API. Services layer
706 can also include communications software stacks for
wireless communications.

OS layer 708 can be a complete operating system (e.g.,
MAC OS) or a kernel (e.g., UNIX kernel). Hardware layer
710 includes hardware necessary to perform the tasks
described in reference to FIGS. 1-6, including but not
limited to: processors or processing cores (including appli-
cation and communication baseband processors), dedicated
signal/image processors, ASICs, graphics processors (e.g.,
GNUs), memory and storage devices, communication ports
and devices, peripherals, etc.

Software stack 700 can be included on a mobile device
capable of executing software applications. An API speci-
fication describing call conventions for accessing API func-
tions can be used by application developers to incorporate
avatar editing and animation in applications.

One or more Application Programming Interfaces (APIs)
may be used in some embodiments. An API is an interface
implemented by a program code component or hardware
component (hereinafter “API-implementing component™)
that allows a different program code component or hardware
component (hereinafter “API-calling component”) to access
and use one or more functions, methods, procedures, data
structures, classes, and/or other services provided by the
API-implementing component. An API can define one or
more parameters that are passed between the API-calling
component and the API-implementing component.

An API allows a developer of an API-calling component
(which may be a third party developer) to leverage specified
features provided by an API-implementing component.
There may be one API-calling component or there may be
more than one such component. An API can be a source code
interface that a computer system or program library provides
in order to support requests for services from an application.
An operating system (OS) can have multiple APIs to allow
applications running on the OS to call one or more of those
APIs, and a service (such as a program library) can have
multiple APIs to allow an application that uses the service to
call one or more of those APIs. An API can be specified in
terms of a programming language that can be interpreted or
compiled when an application is built.

In some embodiments, the API-implementing component
may provide more than one API, each providing a different
view of or with different aspects that access different aspects
of the functionality implemented by the API-implementing
component. For example, one API of an API-implementing
component can provide a first set of functions and can be
exposed to third party developers, and another API of the
API-implementing component can be hidden (not exposed)
and provide a subset of the first set of functions and also
provide another set of functions, such as testing or debug-
ging functions which are not in the first set of functions. In
other embodiments, the API-implementing component may
itself call one or more other components via an underlying
API and thus be both an API-calling component and an
API-implementing component.

An API defines the language and parameters that API-
calling components use when accessing and using specified
features of the API-implementing component. For example,
an API-calling component accesses the specified features of
the API-implementing component through one or more API
calls or invocations (embodied for example by function or
method calls) exposed by the API and passes data and
control information using parameters via the API calls or
invocations. The API-implementing component may return
a value through the API in response to an API call from an

20

25

35

40

45

10

API-calling component. While the API defines the syntax
and result of an API call (e.g., how to invoke the API call and
what the API call does), the API may not reveal how the API
call accomplishes the function specified by the API call.
Various API calls are transferred via the one or more
application programming interfaces between the calling
(API-calling component) and an API-implementing compo-
nent. Transferring the API calls may include issuing, initi-
ating, invoking, calling, receiving, returning, or responding
to the function calls or messages; in other words, transfer-
ring can describe actions by either of the API-calling com-
ponent or the API-implementing component. The function
calls or other invocations of the API may send or receive one
or more parameters through a parameter list or other struc-
ture. A parameter can be a constant, key, data structure,
object, object class, variable, data type, pointer, array, list or
a pointer to a function or method or another way to reference
a data or other item to be passed via the API.

Furthermore, data types or classes may be provided by the
API and implemented by the API-implementing component.
Thus, the API-calling component may declare variables, use
pointers to, use or instantiate constant values of such types
or classes by using definitions provided in the APIL.

Generally, an API can be used to access a service or data
provided by the API-implementing component or to initiate
performance of an operation or computation provided by the
API-implementing component. By way of example, the
API-implementing component and the API-calling compo-
nent may each be any one of an operating system, a library,
a device driver, an API, an application program, or other
module (it should be understood that the API-implementing
component and the API-calling component may be the same
or different type of module from each other). API-imple-
menting components may in some cases be embodied at
least in part in firmware, microcode, or other hardware logic.
In some embodiments, an API may allow a client program
to use the services provided by a Software Development Kit
(SDK) library. In other embodiments an application or other
client program may use an API provided by an Application
Framework. In these embodiments, the application or client
program may incorporate calls to functions or methods
provided by the SDK and provided by the API, or use data
types or objects defined in the SDK and provided by the API.
An Application Framework may, in these embodiments,
provides a main event loop for a program that responds to
various events defined by the Framework. The API allows
the application to specify the events and the responses to the
events using the Application Framework. In some imple-
mentations, an API call can report to an application the
capabilities or state of a hardware device, including those
related to aspects such as input capabilities and state, output
capabilities and state, processing capability, power state,
storage capacity and state, communications capability, etc.,
and the APl may be implemented in part by firmware,
microcode, or other low level logic that executes in part on
the hardware component.

The API-calling component may be a local component
(i.e., on the same data processing system as the API-
implementing component) or a remote component (i.e., on a
different data processing system from the API-implementing
component) that communicates with the API-implementing
component through the API over a network. It should be
understood that an API-implementing component may also
act as an API-calling component (i.e., it may make API calls
to an API exposed by a different API-implementing com-
ponent) and an API-calling component may also act as an

US 9,576,400 B2

11

API-implementing component by implementing an API that
is exposed to a different API-calling component.

The API may allow multiple API-calling components
written in different programming languages to communicate
with the API-implementing component (thus the API may
include features for translating calls and returns between the
API-implementing component and the API-calling compo-
nent); however the AP may be implemented in terms of a
specific programming language. An API-calling component
can, in one embedment, call APIs from different providers
such as a set of APIs from an OS provider and another set
of APIs from a plug-in provider and another set of APIs from
another provider (e.g. the provider of a software library) or
creator of the another set of APIs.

FIG. 7B is a block diagram illustrating an exemplary API
architecture, which may be used in some embodiments of
the invention. As shown in FIG. 7B, the API architecture 720
includes the API-implementing component 722 (e.g., an
operating system, a library, a device driver, an API, an
application program, software or other module) that imple-
ments the API 724. The API 724 specifies one or more
functions, methods, classes, objects, protocols, data struc-
tures, formats and/or other features of the API-implementing
component that may be used by the API-calling component
726. The API 724 can specify at least one calling convention
that specifies how a function in the API-implementing
component receives parameters from the API-calling com-
ponent and how the function returns a result to the API-
calling component. The API-calling component 726 (e.g., an
operating system, a library, a device driver, an API, an
application program, software or other module), makes API
calls through the API 724 to access and use the features of
the API-implementing component 722 that are specified by
the API 724. The API-implementing component 722 may
return a value through the API 724 to the API-calling
component 726 in response to an API call.

It will be appreciated that the API-implementing compo-
nent 722 may include additional functions, methods, classes,
data structures, and/or other features that are not specified
through the API 724 and are not available to the API-calling
component 726. It should be understood that the API-calling
component 726 may be on the same system as the API-
implementing component 722 or may be located remotely
and accesses the API-implementing component 722 using
the API 724 over a network. While FIG. 7B illustrates a
single API-calling component 726 interacting with the API
724, it should be understood that other API-calling compo-
nents, which may be written in different languages (or the
same language) than the API-calling component 726, may
use the API 724.

The API-implementing component 722, the API 724, and
the API-calling component 726 may be stored in a machine-
readable medium, which includes any mechanism for stor-
ing information in a form readable by a machine (e.g., a
computer or other data processing system). For example, a
machine-readable medium includes magnetic disks, optical
disks, random access memory; read only memory, flash
memory devices, etc.

In FIG. 7C (“Software Stack” 730), an exemplary
embodiment, applications can make calls to Service A 732
or Service B 734 using several Service APIs (Service APl A
and Service API B) and to Operating System (OS) 736 using
several OS APIs. Service A 732 and service B 734 can make
calls to OS 736 using several OS APIs.

Note that the Service B 734 has two APIs, one of which
(Service B API A 738) receives calls from and returns values
to Application A 740 and the other (Service B API B 742)

30

35

40

45

50

55

12

receives calls from and returns values to Application B 744.
Service A 732 (which can be, for example, a software
library) makes calls to and receives returned values from OS
API A 746, and Service B 734 (which can be, for example,
a software library) makes calls to and receives returned
values from both OS API A 746 and OS API B 748.
Application B 744 makes calls to and receives returned
values from OS API B 748.

Exemplary Avatar Editing Process

FIG. 8 is a flow diagram of an exemplary process 800 for
creating an avatar in an avatar editing environment. Process
800 can be described in reference to a system for imple-
menting the process, such as the avatar editing environment
described in reference to FIGS. 1-7.

In some implementations, process 800 can begin by
presenting an avatar editing environment on a display of a
device (802) and displaying an avatar model in the envi-
ronment (804). The avatar model can be a 2D or 3D model.
The display can be a touch sensitive display. The avatar
model can be displayed with a blank face or a default avatar
with predefined elements can be displayed based on infor-
mation previously gathered from the user.

First input is received selecting an avatar element cat-
egory (806). In some implementations, a category picker can
be used such as the category picker described in reference to
FIGS. 1A-1E.

Second input is received selecting an element from the
selected element category (808). In some implementations,
an element picker can be used such as the element picker
described in reference to FIGS. 1A-1E and FIGS. 4A and
4B.

After an element is selected, the element can be auto-
matically rendered on-the-fly on the avatar model (810). In
some implementations, elements can be 2D textures that are
rendered on a 3D avatar model.

A third input is received for manually editing an element
of the avatar (812). The third input can be a touch input or
gesture focused on the element to be edited. Manual editing
can include resizing, rotating and positioning the element.
Manual editing can be restricted to editing regions. Manual
editing can include zooming or magnifying an element for
more refined editing.

Exemplary Mobile Device Architecture

FIG. 9 is a block diagram of an exemplary hardware
architecture for a device implementing the avatar editing
environment and animation described in reference to FIGS.
1-8. The device can include memory interface 902, one or
more data processors, image processors and/or processors
904, and peripherals interface 906. Memory interface 902,
one or more processors 904 and/or peripherals interface 906
can be separate components or can be integrated in one or
more integrated circuits. The various components in the
device, for example, can be coupled by one or more com-
munication buses or signal lines.

Sensors, devices, and subsystems can be coupled to
peripherals interface 906 to facilitate multiple functional-
ities. For example, motion sensor 910, light sensor 912, and
proximity sensor 914 can be coupled to peripherals interface
906 to facilitate orientation, lighting, and proximity func-
tions of the mobile device. Location processor 915 (e.g.,
GPS receiver) can be connected to peripherals interface 906
to provide geopositioning. Electronic magnetometer 916
(e.g., an integrated circuit chip) can also be connected to

US 9,576,400 B2

13

peripherals interface 906 to provide data that can be used to
determine the direction of magnetic North. Thus, electronic
magnetometer 916 can be used as an electronic compass.
Accelerometer 917 can also be connected to peripherals
interface 906 to provide data that can be used to determine
change of speed and direction of movement of the mobile
device.

Camera subsystem 920 and an optical sensor 922, e.g., a
charged coupled device (CCD) or a complementary metal-
oxide semiconductor (CMOS) optical sensor, can be utilized
to facilitate camera functions, such as recording photographs
and video clips.

Communication functions can be facilitated through one
or more wireless communication subsystems 924, which can
include radio frequency receivers and transmitters and/or
optical (e.g., infrared) receivers and transmitters. The spe-
cific design and implementation of the communication sub-
system 924 can depend on the communication network(s)
over which a mobile device is intended to operate. For
example, a mobile device can include communication sub-
systems 924 designed to operate over a GSM network, a
GPRS network, an EDGE network, a Wi-Fi or WiMax
network, and a Bluetooth network. In particular, the wireless
communication subsystems 924 can include hosting proto-
cols such that the mobile device can be configured as a base
station for other wireless devices.

Audio subsystem 926 can be coupled to a speaker 928 and
a microphone 930 to facilitate voice-enabled functions, such
as voice recognition, voice replication, digital recording, and
telephony functions.

1/O subsystem 940 can include touch screen controller
942 and/or other input controller(s) 944. Touch-screen con-
troller 942 can be coupled to a touch screen 946 or pad.
Touch screen 946 and touch screen controller 942 can, for
example, detect contact and movement or break thereof
using any of a plurality of touch sensitivity technologies,
including but not limited to capacitive, resistive, infrared,
and surface acoustic wave technologies, as well as other
proximity sensor arrays or other elements for determining
one or more points of contact with touch screen 946.

Other input controller(s) 944 can be coupled to other
input/control devices 948, such as one or more buttons,
rocker switches, thumb-wheel, infrared port, USB port,
and/or a pointer device such as a stylus. The one or more
buttons (not shown) can include an up/down button for
volume control of speaker 928 and/or microphone 930.

In one implementation, a pressing of the button for a first
duration may disengage a lock of the touch screen 946; and
a pressing of the button for a second duration that is longer
than the first duration may turn power to the device on or off.
The user may be able to customize a functionality of one or
more of the buttons. The touch screen 946 can, for example,
also be used to implement virtual or soft buttons and/or a
keyboard.

In some implementations, the device can present recorded
audio and/or video files, such as MP3, AAC, and MPEG
files. In some implementations, the device can include the
functionality of an MP3 player, such as an iPod™. The
device may, therefore, include a pin connector that is com-
patible with the iPod. Other input/output and control devices
can also be used.

Memory interface 902 can be coupled to memory 950.
Memory 950 can include high-speed random access memory
and/or non-volatile memory, such as one or more magnetic
disk storage devices, one or more optical storage devices,
and/or flash memory (e.g., NAND, NOR). Memory 950 can
store operating system 952, such as Darwin, RTXC, LINUX,

20

25

30

40

45

50

14
UNIX, OS X, WINDOWS, or an embedded operating
system such as VxWorks. Operating system 952 may
include instructions for handling basic system services and
for performing hardware dependent tasks. In some imple-
mentations, operating system 952 can include a kernel (e.g.,
UNIX kernel).

Memory 950 may also store communication instructions
954 to facilitate communicating with one or more additional
devices, one or more computers and/or one or more servers.
Memory 950 may include graphical user interface instruc-
tions 956 to facilitate graphic user interface processing;
sensor processing instructions 958 to facilitate sensor-re-
lated processing and functions; phone instructions 960 to
facilitate phone-related processes and functions; electronic
messaging instructions 962 to facilitate electronic-messag-
ing related processes and functions; web browsing instruc-
tions 964 to facilitate web browsing-related processes and
functions; media processing instructions 966 to facilitate
media processing-related processes and functions; GPS/
Navigation instructions 968 to facilitate GPS and naviga-
tion-related processes and instructions; and camera instruc-
tions 970 to {facilitate camera-related processes and
functions. The memory 950 may also store other software
instructions (not shown), such as security instructions, web
video instructions to facilitate web video-related processes
and functions, and/or web shopping instructions to facilitate
web shopping-related processes and functions. In some
implementations, the media processing instructions 966 are
divided into audio processing instructions and video pro-
cessing instructions to facilitate audio processing-related
processes and functions and video processing-related pro-
cesses and functions, respectively. An activation record and
International Mobile Equipment Identity (IMEI) or similar
hardware identifier can also be stored in memory 950.

Memory 950 can include instructions for avatar editing
environment 972 and avatar animation engine 974. Memory
950 can be a local cache for avatar data 976 that results from
the avatar editing process.

Each of the above identified instructions and applications
can correspond to a set of instructions for performing one or
more functions described above. These instructions need not
be implemented as separate software programs, procedures,
or modules. Memory 950 can include additional instructions
or fewer instructions. Furthermore, various functions of the
mobile device may be implemented in hardware and/or in
software, including in one or more signal processing and/or
application specific integrated circuits.

Exemplary Operating Environment

FIG. 10 is a block diagram of an exemplary network
operating environment for a device employing the avatar
editing environment and animation described in reference to
FIGS. 1-8. In this example, devices 1002a and 10025 can,
for example, communicate over one or more wired and/or
wireless networks 1010 in data communication. For
example, a wireless network 1012, e.g., a cellular network,
can communicate with a wide area network (WAN) 1014,
such as the Internet, by use of a gateway 1016. Likewise, an
access device 1018, such as an 802.11g wireless access
device, can provide communication access to the wide area
network 1014. Although this example illustrates an operat-
ing environment for mobile devices, the operating environ-
ment can also be applied to a device that is wired to a
network (e.g., a desktop computer).

In some implementations, both voice and data communi-
cations can be established over wireless network 1012 and

US 9,576,400 B2

15

the access device 1018. For example, mobile device 1002a
can place and receive phone calls (e.g., using voice over
Internet Protocol (VoIP) protocols), send and receive e-mail
messages (e.g., using Post Office Protocol 3 (POP3)), and
retrieve electronic documents and/or streams, such as web
pages, photographs, and videos, over wireless network 1012,
gateway 1016, and wide area network 1014 (e.g., using
Transmission Control Protocol/Internet Protocol (TCP/IP)
or User Datagram Protocol (UDP)). Likewise, in some
implementations, the mobile device 10025 can place and
receive phone calls, send and receive e-mail messages, and
retrieve electronic documents over the access device 1018
and the wide area network 1014. In some implementations,
device 1002a or 10025 can be physically connected to the
access device 1018 using one or more cables and the access
device 1018 can be a personal computer. In this configura-
tion, device 1002a or 10025 can be referred to as a “teth-
ered” device.

Devices 10024 and 10024 can also establish communi-
cations by other means. For example, wireless device 1002a
can communicate with other wireless devices, e.g., other
devices 1002a or 10024, cell phones, etc., over the wireless
network 1012. Likewise, devices 10024 and 10025 can
establish peer-to-peer communications 1020, e.g., a personal
area network, by use of one or more communication sub-
systems, such as the Bluetooth™ communication devices.
Other communication protocols and topologies can also be
implemented.

Device 1002a or 100256 can communicate with a variety
of services over the one or more wired and/or wireless
networks. In some implementations, services can include
mobile device services 1030, social network services 1040,
and game center services 1042.

Mobile device services 1030 can provide a variety of
services for device 10024 or 10025, including but not
limited to mail services, text messaging, chat sessions,
videoconferencing, Internet services, location based services
(e.g., map services), sync services, remote storage 1044,
downloading services, etc. Remote storage 1046 can be used
to store avatar data, which can be used on multiple devices
of the user or shared by multiple users. In some implemen-
tations, an avatar editing environment can be provided by
one or more of the services 1030, 1040, 1042, which can be
accessed by a user of device 10024 or 10025 through, for
example, web pages served by one or more servers operated
by the services 1030, 1040, 1042.

In some implementations, social networking services
1040 can provide a social networking website, where a user
of'device 1002a or 10025 can set up a personal network and
invite friends to contribute and share content, including
avatars and avatar related items. A user can use their custom
avatar made with an avatar editing environment in place of
a digital photo to protect their privacy.

In some implementations, game center services 1042 can
provide an online gaming environment, where users of
device 1002a or 10025 can participate in online interactive
games with their avatars created using the avatar editing
environment described in reference to FIGS. 1-7. In some
implementations, avatars and/or elements created by an
avatar editing environment can be shared among users or
sold to players of online games. For example, an avatar store
can be provided by game center services 1042 for users to
buy or exchange avatars and avatar related items (e.g.,
clothes, accessories).

Device 1002a or 10025 can also access other data and
content over the one or more wired and/or wireless net-
works. For example, content publishers, such as news sites,

10

15

20

25

30

35

40

45

50

55

60

65

16

Rally Simple Syndication (RSS) feeds, web sites, blogs,
social networking sites, developer networks, etc., can be
accessed by device 1002a or 10025. Such access can be
provided by invocation of a web browsing function or
application (e.g., a browser) in response to a user touching,
for example, a Web object.

Described embodiments may include touch /O device
1101 that can receive touch input for interacting with
computing system 1103 (FIG. 11) via wired or wireless
communication channel 1102. Touch I/O device 1101 may
be used to provide user input to computing system 1103 in
lieu of or in combination with other input devices such as a
keyboard, mouse, etc. One or more touch I/O devices 1101
may be used for providing user input to computing system
1103. Touch /O device 1101 may be an integral part of
computing system 1103 (e.g., touch screen on a laptop) or
may be separate from computing system 1103.

Touch I/O device 1101 may include a touch sensitive
panel which is wholly or partially transparent, semitrans-
parent, non-transparent, opaque or any combination thereof.
Touch I/O device 1101 may be embodied as a touch screen,
touch pad, a touch screen functioning as a touch pad (e.g.,
a touch screen replacing the touchpad of a laptop), a touch
screen or touchpad combined or incorporated with any other
input device (e.g., a touch screen or touchpad disposed on a
keyboard) or any multi-dimensional object having a touch
sensitive surface for receiving touch input.

In one example, touch I/O device 1101 embodied as a
touch screen may include a transparent and/or semitrans-
parent touch sensitive panel partially or wholly positioned
over at least a portion of a display. According to this
embodiment, touch I/O device 1101 functions to display
graphical data transmitted from computing system 1103
(and/or another source) and also functions to receive user
input. In other embodiments, touch I/O device 1101 may be
embodied as an integrated touch screen where touch sensi-
tive components/devices are integral with display compo-
nents/devices. In still other embodiments, a touch screen
may be used as a supplemental or additional display screen
for displaying supplemental or the same graphical data as a
primary display and to receive touch input.

Touch I/O device 1101 may be configured to detect the
location of one or more touches or near touches on device
1101 based on capacitive, resistive, optical, acoustic, induc-
tive, mechanical, chemical measurements, or any phenom-
ena that can be measured with respect to the occurrences of
the one or more touches or near touches in proximity to
device 1101. Software, hardware, firmware or any combi-
nation thereof may be used to process the measurements of
the detected touches to identify and track one or more
gestures. A gesture may correspond to stationary or non-
stationary, single or multiple, touches or near touches on
touch /O device 1101. A gesture may be performed by
moving one or more fingers or other objects in a particular
manner on touch /O device 1101 such as tapping, pressing,
rocking, scrubbing, twisting, changing orientation, pressing
with varying pressure and the like at essentially the same
time, contiguously, or consecutively. A gesture may be
characterized by, but is not limited to a pinching, sliding,
swiping, rotating, flexing, dragging, or tapping motion
between or with any other finger or fingers. A single gesture
may be performed with one or more hands, by one or more
users, or any combination thereof.

Computing system 1103 may drive a display with graphi-
cal data to display a graphical user interface (GUI). The GUI
may be configured to receive touch input via touch I/O
device 1101. Embodied as a touch screen, touch I/O device

US 9,576,400 B2

17

1101 may display the GUI. Alternatively, the GUI may be
displayed on a display separate from touch I/O device 1101.
The GUI may include graphical elements displayed at
particular locations within the interface. Graphical elements
may include but are not limited to a variety of displayed
virtual input devices including virtual scroll wheels, a virtual
keyboard, virtual knobs, virtual buttons, any virtual Ul, and
the like. A user may perform gestures at one or more
particular locations on touch I/O device 1101 which may be
associated with the graphical elements of the GUI. In other
embodiments, the user may perform gestures at one or more
locations that are independent of the locations of graphical
elements of the GUI. Gestures performed on touch I/O
device 1101 may directly or indirectly manipulate, control,
modify, move, actuate, initiate or generally affect graphical
elements such as cursors, icons, media files, lists, text, all or
portions of images, or the like within the GUI. For instance,
in the case of a touch screen, a user may directly interact
with a graphical element by performing a gesture over the
graphical element on the touch screen. Alternatively, a touch
pad generally provides indirect interaction. Gestures may
also affect non-displayed GUI elements (e.g., causing user
interfaces to appear) or may affect other actions within
computing system 1103 (e.g., affect a state or mode of a
GUI, application, or operating system). Gestures may or
may not be performed on touch I/O device 1101 in conjunc-
tion with a displayed cursor. For instance, in the case in
which gestures are performed on a touchpad, a cursor (or
pointer) may be displayed on a display screen or touch
screen and the cursor may be controlled via touch input on
the touchpad to interact with graphical objects on the display
screen. In other embodiments in which gestures are per-
formed directly on a touch screen, a user may interact
directly with objects on the touch screen, with or without a
cursor or pointer being displayed on the touch screen.

Feedback may be provided to the user via communication
channel 1102 in response to or based on the touch or near
touches on touch I/O device 1101. Feedback may be trans-
mitted optically, mechanically, electrically, olfactory, acous-
tically, or the like or any combination thereof and in a
variable or non-variable manner.

The features described can be implemented in digital
electronic circuitry, or in computer hardware, firmware,
software, or in combinations of them. The features can be
implemented in a computer program product tangibly
embodied in an information carrier, e.g., in a machine-
readable storage device, for execution by a programmable
processor; and method steps can be performed by a pro-
grammable processor executing a program of instructions to
perform functions of the described implementations by
operating on input data and generating output. Alternatively
or addition, the program instructions can be encoded on a
propagated signal that is an artificially generated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information fro transmis-
sion to suitable receiver apparatus for execution by a pro-
grammable processor.

Attention is now directed towards embodiments of a
system architecture that may be embodied within any por-
table or non-portable device including but not limited to a
communication device (e.g. mobile phone, smart phone), a
multi-media device (e.g., MP3 player, TV, radio), a portable
or handheld computer (e.g., tablet, netbook, laptop), a desk-
top computer, an All-In-One desktop, a peripheral device, or
any other system or device adaptable to the inclusion of
system architecture 1200, including combinations of two or
more of these types of devices. FIG. 12 is a block diagram

10

15

20

25

30

35

40

45

50

55

60

18

of one embodiment of system 1200 that generally includes
one or more computer-readable mediums 1201, processing
system 1204, Input/Output (I/0) subsystem 1206, radio
frequency (RF) circuitry 1208 and audio circuitry 1210.
These components may be coupled by one or more com-
munication buses or signal lines 1203.

It should be apparent that the architecture shown in FIG.
12 is only one example architecture of system 1200, and that
system 1200 could have more or fewer components than
shown, or a different configuration of components. The
various components shown in FIG. 12 can be implemented
in hardware, software, firmware or any combination thereof,
including one or more signal processing and/or application
specific integrated circuits.

RF circuitry 1208 is used to send and receive information
over a wireless link or network to one or more other devices
and includes well-known circuitry for performing this func-
tion. RF circuitry 1208 and audio circuitry 1210 are coupled
to processing system 1204 via peripherals interface 1216.
Interface 1216 includes various known components for
establishing and maintaining communication between
peripherals and processing system 1204. Audio circuitry
1210 is coupled to audio speaker 1250 and microphone 1252
and includes known circuitry for processing voice signals
received from interface 1216 to enable a user to communi-
cate in real-time with other users. In some embodiments,
audio circuitry 1210 includes a headphone jack (not shown).

Peripherals interface 1216 couples the input and output
peripherals of the system to processor 1218 and computer-
readable medium 1201. One or more processors 1218 com-
municate with one or more computer-readable mediums
1201 via controller 1220. Computer-readable medium 1201
can be any device or medium that can store code and/or data
for use by one or more processors 1218. Medium 1201 can
include a memory hierarchy, including but not limited to
cache, main memory and secondary memory. The memory
hierarchy can be implemented using any combination of
RAM (e.g., SRAM, DRAM, DDRAM), ROM, FLASH,
magnetic and/or optical storage devices, such as disk drives,
magnetic tape, CDs (compact disks) and DVDs (digital
video discs). Medium 1201 may also include a transmission
medium for carrying information-bearing signals indicative
of computer instructions or data (with or without a carrier
wave upon which the signals are modulated). For example,
the transmission medium may include a communications
network, including but not limited to the Internet (also
referred to as the World Wide Web), intranet(s), Local Area
Networks (LANs), Wide Local Area Networks (WL ANSs),
Storage Area Networks (SANs), Metropolitan Area Net-
works (MAN) and the like.

One or more processors 1218 run various software com-
ponents stored in medium 1201 to perform various functions
for system 1200. In some embodiments, the software com-
ponents include operating system 1222, communication
module (or set of instructions) 2024, touch processing
module (or set of instructions) 1226, graphics module (or set
of instructions) 1228, one or more applications (or set of
instructions) 1230, and avatar editing module 1238. Each of
these modules and above noted applications correspond to a
set of instructions for performing one or more functions
described above and the methods described in this applica-
tion (e.g., the computer-implemented methods and other
information processing methods described herein). These
modules (i.e., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise rearranged in various embodiments. In some

US 9,576,400 B2

19

embodiments, medium 1201 may store a subset of the
modules and data structures identified above. Furthermore,
medium 1201 may store additional modules and data struc-
tures not described above.

Operating system 1222 includes various procedures, sets
of instructions, software components and/or drivers for
controlling and managing general system tasks (e.g.,
memory management, storage device control, power man-
agement, etc.) and facilitates communication between vari-
ous hardware and software components.

Communication module 1224 facilitates communication
with other devices over one or more external ports 1236 or
via RF circuitry 1208 and includes various software com-
ponents for handling data received from RF circuitry 1208
and/or external port 1236.

Graphics module 1228 includes various known software
components for rendering, animating and displaying graphi-
cal objects on a display surface. In embodiments in which
touch 1/O device 1212 is a touch sensitive display (e.g.,
touch screen), graphics module 1228 includes components
for rendering, displaying, and animating objects on the touch
sensitive display.

One or more applications 1230 can include any applica-
tions installed on system 1200, including without limitation,
a browser, address book, contact list, email, instant messag-
ing, word processing, keyboard emulation, widgets, JAVA-
enabled applications, encryption, digital rights management,
voice recognition, voice replication, location determination
capability (such as that provided by the global positioning
system (GPS)), a music player, etc.

Touch processing module 1226 includes various software
components for performing various tasks associated with
touch I/O device 1212 including but not limited to receiving
and processing touch input received from I/O device 1212
via touch I/O device controller 1232.

System 1200 may further include avatar editing module
1238 for performing the method/functions as described
herein in connection with FIGS. 1-7. Avatar editing module
1238 may at least function to provide the avatar editing
environment described with respect to FIGS. 1-7. Avatar
editing module 1238 may also interact with other elements
of system 1200 to provide the avatar editing functions.
Avatar editing module 1238 may be embodied as hardware,
software, firmware, or any combination thereof. Although
module 1238 is shown to reside within medium 1201, all or
portions of module 1238 may be embodied within other
components within system 1200 or may be wholly embodied
as a separate component within system 1200.

1/O subsystem 1206 is coupled to touch I/O device 1212
and one or more other /O devices 1214 for controlling or
performing various functions. Touch /O device 1212 com-
municates with processing system 1204 via touch I/O device
controller 1232, which includes various components for
processing user touch input (e.g., scanning hardware). One
or more other input controllers 1234 receives/sends electri-
cal signals from/to other I/O devices 1214. Other I/O devices
1214 may include physical buttons, dials, slider switches,
sticks, keyboards, touch pads, additional display screens, or
any combination thereof.

If embodied as a touch screen, touch I/O device 1212
displays visual output to the user in a GUI. The visual output
may include text, graphics, video, and any combination
thereof. Some or all of the visual output may correspond to
user-interface objects. Touch /O device 1212 forms a touch-
sensitive surface that accepts touch input from the user.
Touch I/O device 1212 and touch screen controller 1232
(along with any associated modules and/or sets of instruc-

10

15

20

25

30

35

40

45

50

55

60

65

20

tions in medium 1201) detects and tracks touches or near
touches (and any movement or release of the touch) on touch
1/O device 1212 and converts the detected touch input into
interaction with graphical objects, such as one or more
user-interface objects. In the case in which device 1212 is
embodied as a touch screen, the user can directly interact
with graphical objects that are displayed on the touch screen.
Alternatively, in the case in which device 1212 is embodied
as a touch device other than a touch screen (e.g., a touch
pad), the user may indirectly interact with graphical objects
that are displayed on a separate display screen embodied as
1/O device 1214.

Touch /O device 1212 may be analogous to the multi-
touch sensitive surface described in the following U.S. Pat.
No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557
(Westerman et al.), and/or U.S. Pat. No. 6,677,932 (West-
erman), and/or U.S. Patent Publication 1202/0015024A1,
each of which is hereby incorporated by reference.

Embodiments in which touch I/O device 1212 is a touch
screen, the touch screen may use LCD (liquid crystal dis-
play) technology, LPD (light emitting polymer display)
technology, OLED (organic LED), or OEL (organic electro
luminescence), although other display technologies may be
used in other embodiments.

Feedback may be provided by touch /O device 1212
based on the user’s touch input as well as a state or states of
what is being displayed and/or of the computing system.
Feedback may be transmitted optically (e.g., light signal or
displayed image), mechanically (e.g., haptic feedback, touch
feedback, force feedback, or the like), electrically (e.g.,
electrical stimulation), olfactory, acoustically (e.g., beep or
the like), or the like or any combination thereof and in a
variable or non-variable manner.

System 1200 also includes power system 1244 for pow-
ering the various hardware components and may include a
power management system, one or more power sources, a
recharging system, a power failure detection circuit, a power
converter or inverter, a power status indicator and any other
components typically associated with the generation, man-
agement and distribution of power in portable devices.

In some embodiments, peripherals interface 1216, one or
more processors 1218, and memory controller 1220 may be
implemented on a single chip, such as processing system
1204. In some other embodiments, they may be imple-
mented on separate chips.

The described features can be implemented advanta-
geously in one or more computer programs that are execut-
able on a programmable system including at least one
programmable processor coupled to receive data and
instructions from, and to transmit data and instructions to, a
data storage system, at least one input device, and at least
one output device. A computer program is a set of instruc-
tions that can be used, directly or indirectly, in a computer
to perform a certain activity or bring about a certain result.
A computer program can be written in any form of pro-
gramming language (e.g., Objective-C, Java), including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer.
Generally, a processor will receive instructions and data
from a read-only memory or a random access memory or
both. The essential elements of a computer are a processor

US 9,576,400 B2

21

for executing instructions and one or more memories for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to communicate with, one
or more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide input to the computer.

The features can be implemented in a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network. The relationship of
client and server arises by virtue of computer programs
running on the respective computers and having a client-
server relationship to each other.

One or more features or steps of the disclosed embodi-
ments can be implemented using an API. An API can define
on or more parameters that are passed between a calling
application and other software code (e.g., an operating
system, library routine, function) that provides a service,
that provides data, or that performs an operation or a
computation.

The API can be implemented as one or more calls in
program code that send or receive one or more parameters
through a parameter list or other structure based on a call
convention defined in an API specification document. A
parameter can be a constant, a key, a data structure, an
object, an object class, a variable, a data type, a pointer, an
array, a list, or another call. API calls and parameters can be
implemented in any programming language. The program-
ming language can define the vocabulary and calling con-
vention that a programmer will employ to access functions
supporting the API.

In some implementations, an API call can report to an
application the capabilities of a device running the applica-
tion, such as input capability, output capability, processing
capability, power capability, communications capability, etc.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made. For example, elements of one or more
implementations may be combined, deleted, modified, or
supplemented to form further implementations. As yet
another example, the logic flows depicted in the figures do
not require the particular order shown, or sequential order, to

10

15

20

25

30

35

40

45

50

55

60

65

22

achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

What is claimed is:
1. A computer-implemented method performed by one or
more processors, comprising:
presenting an avatar editing environment on a display of
a device, the avatar editing environment including a
plurality of editing zones;
displaying an avatar model in the avatar editing environ-
ment, the avatar model including a plurality of avatar
elements, each avatar element positioned in a respec-
tive editing zone;
receiving first input selecting an editing zone;
in response to receiving the first input, displaying, in the
selected editing zone and in an image layer either over
or below an avatar element image layer displayed in the
selected editing zone, the avatar element image layer
including the avatar element, selection elements select-
able to modify the avatar element displayed in the
selected editing zone;
receiving a second input selecting a selection element;
in response to receiving the second input, displaying a
different avatar element in place of the avatar element
in the selected editing zone; and
rendering the avatar model in the avatar editing environ-
ment, the avatar model including the different avatar
element.
2. The method of claim 1, where the device is a mobile
device and the display is a touch sensitive display.
3. The method of claim 1, wherein presenting the avatar
editing environment on the display of the device comprises:
displaying a bar in the avatar editing environment, the bar
containing a number of icons representing element
categories; and
applying a touch input to the bar on the display to animate
the icons, the animation simulating motion of the icons
through a center position of the bar, where the icon
occupying the center position of the bar when the
motion stops is the selected avatar element category.
4. The method of claim 3, further comprising:
displaying a grid view in the avatar editing environment,
at least some cells in the grid view displaying the avatar
with a different avatar element;
associating the second input with a cell; and
selecting an avatar element based on the associating.
5. The method of claim 1, wherein rendering the avatar
model comprises:
rendering a two-dimensional texture representing the ava-
tar element on the avatar model.
6. The method of claim 1, further comprising:
providing avatar data to an application, the avatar data
operable for creating the avatar in the application.
7. The method of claim 6, further comprising:
animating the avatar in the application.
8. The method of claim 7, where animating the avatar in
the application, comprises:
animating an eye element on the avatar in response to a
trigger event.
9. The method of claim 7, where animating an eye
element, comprises:
animating the eye element to follow a cursor or other
object displayed in a user interface of the application.

US 9,576,400 B2

23

10. The method of claim 1, wherein the avatar element is
included in a selected avatar element category, the method
further comprising:

receiving fourth input selecting a color for the selected

avatar element category;

displaying a grid view in the avatar editing environment,

at least some cells in the grid view displaying different
colors associated with the selected avatar element cat-
egory;

associating the fourth input with a cell; and

selecting a color based on the associating.

11. The method of claim 1, further comprising:

receiving an input for zooming the avatar element; and

receiving an input for manually editing the zoomed avatar
element.

12. The method of claim 11, where the input for zooming
the avatar element is a touch input or gesture.

13. The method of claim 11, where receiving the input for
manually editing the zoomed avatar element, comprises:

moving, rotating or resizing the avatar element according

to the input for manually editing the zoomed avatar
element.

14. The method of claim 13, further comprising:

defining an editing region surrounding the avatar element;

and

restricting the manual editing to within the editing region.

15. The method of claim 11, wherein receiving the input
for manually editing the zoomed avatar element comprises:

receiving a touch selection of the zoomed avatar element;

and

after receiving the touch selection, receiving a gesture

selection of the zoomed avatar element.
16. The method of claim 15, further comprising resizing
the zoomed avatar element in response to the touch selection
and the gesture selection.
17. A computer-implemented method performed by one
or more processors, comprising:
presenting an avatar editing environment on a touch
sensitive display of a mobile device, the avatar editing
environment including a plurality of editing zones;

displaying a three-dimensional (3D) avatar model in the
avatar editing environment, the avatar model including
a plurality of avatar elements, each avatar element
positioned in a respective editing zone;

receiving a user selection of an editing zone, the user

selection of the editing zone comprising a touch input
of the touch sensitive display at a location at which the
editing zone is displayed;
in response to receiving the user selection of the editing
zone, displaying, in the selected editing zone and in an
image layer either over or below an avatar element
image layer displayed in the selected editing zone, the
avatar element image layer including the avatar ele-
ment, selection elements selectable to modify the ava-
tar element displayed in the selected editing zone;

receiving a user selection of a selection element displayed
in the selected editing zone, the user selection of the
editing zone comprising a touch input of the touch
sensitive display at a location at which the selection
element is displayed;
in response to receiving the user selection of the selection
element, displaying a different avatar element in place
of the avatar element in the selected editing zone; and

rendering the avatar model in the avatar editing environ-
ment, the avatar model including the different avatar
element.

10

15

20

25

30

35

40

45

50

55

60

65

24

18. The method of claim 17, wherein rendering the
selected avatar model comprises:
rendering a two-dimensional (2D) texture representing
the avatar element on the 3D avatar model.
19. The method of claim 17, further comprising:
defining an editing region surrounding the avatar element;
and
restricting the manual editing to within the editing region.
20. The method of claim 17, further comprising a touch
input or gesture for manually resizing or rotating the zoomed
avatar element.
21. The method of claim 20, wherein receiving the touch
input or gesture for manually resizing or rotating the zoomed
avatar element comprises:
receiving a touch selection of the zoomed avatar element;
and
after receiving the touch selection, receiving a gesture
selection of the zoomed avatar element.
22. The method of claim 21, further comprising resizing
or rotating the zoomed avatar element in response to the
touch selection and the gesture selection.
23. A system for editing avatars, comprising:
one Or mMore processors;
a computer-readable medium coupled to the one or more
processors and storing instructions, which, when
executed by the one or more processors, causes the one
or more processors to perform operations, comprising:
presenting an avatar editing environment on a display
of a device, the avatar editing environment including
a plurality of editing zones;

displaying an avatar model in the avatar editing envi-
ronment, the avatar model including a plurality of
avatar elements, each avatar element positioned in a
respective editing zone;

receiving first input selecting an editing zone;

in response to receiving the first input, displaying, in
the selected editing zone and in an image layer either
over or below an avatar element image layer dis-
played in the selected editing zone, the avatar ele-
ment image layer including the avatar element,
selection elements selectable to modify the avatar
element displayed in the selected editing zone, the
selection elements displayed on either side of the
avatar element;

receiving a second input selecting a selection element;

in response to receiving the second input, displaying a
different avatar element in place of the avatar ele-
ment in the selected editing zone; and

rendering the avatar model in the avatar editing envi-
ronment, the avatar model including the different
avatar element.

24. The system of claim 23, where the system is a mobile
device and the display is a touch sensitive display.

25. The system of claim 24, the operations further com-
prising receiving third input for manually editing the differ-
ent avatar element, where the third input is a touch input or
gesture.

26. The system of claim 25, wherein receiving the third
input for manually editing the avatar element comprises:

receiving a touch selection of the zoomed avatar element;
and

after receiving the touch selection, receiving a gesture
selection of the zoomed avatar element.

27. The system of claim 26, the operations further com-

prising resizing the zoomed avatar element in response to
the touch selection and the gesture selection.

US 9,576,400 B2

25

28. The system of claim 24, where the computer-readable
medium stores instructions, which when executed by the one
or more processors, causes the one or more processors to
perform operations comprising:

displaying a grid view in the avatar editing environment,

at least some cells in the grid view displaying the avatar
with a different avatar element;

associating the second input with a cell; and

selecting an avatar element based on the associating.

29. The system of claim 24, where the computer-readable
medium stores instructions, which when executed by the one
or more processors, causes the one or more processors to
perform operations comprising:

rendering a two-dimensional texture representing the ava-

tar element on the avatar model.

30. The system of claim 24, where the computer-readable
medium stores instructions, which when executed by the one
or more processors, causes the one or more processors to
perform operations comprising:

receiving third input for manually editing the avatar

element; and

moving, rotating or resizing the avatar element according

to the third input.

5

15

20

26

31. The system of claim 23, the operations further com-
prising:

defining an editing region surrounding the avatar element;

and

restricting the manual editing to within the editing region

where the manual editing is restricted to an editing region

associated with the avatar element.
32. The system of claim 23, where the computer-readable
medium stores instructions, which when executed by the one
or more processors, causes the one or more processors to
perform operations comprising:
providing avatar data to an application, the avatar data
operable for creating the avatar in the application; and

animating the avatar in the application, the animating
including animating an eye element of the avatar in
response to a trigger event or animating the eye element
to follow a cursor or other object displayed in a user
interface of the application.

33. The system of claim 23, the operations further com-
prising receiving an input for zooming the avatar element.

#* #* #* #* #*

